d/v-CLSAG:
Extension for Concise Linkable Spontaneous Anonymous
Group Signatures

sowle!*t

1Zano project, val@zano.org

March 2024%

1 Introduction

In this paper we present a Schnorr-like linkable ring signature scheme we call 4/v-CLSAG that
is extension for d-CLSAG scheme proposed in [1]. The proposed extension allows the use of different
group generators for different layers of the ring members: pk == sko G, G = (G}, ...,Gk,_,) € G4,
while the original scheme assumes the use of the same generator G across all layers: pk = sk o
G, G = (G,...,G) € G To improve the signature size we use key aggregation techniques in the
same way, but for distinct group generators {Gr} individually. Note, that we don’t require the
absence of efficiently-computable discrete logarithm relations between {Gj}. However, it might be
possible, that adding such a limitation would allow us to reduce the signature size. This is the
subject of future studies.

We provide the security statements for the proposed updated scheme in Theorem 2, Theorem 3,
and Theorem 4. The proofs mostly correspond to the original proofs in [1]. We use the same numer-
ation for theorems, definitions, and lemmas as in the original work. For the reader’s convenience,
all changes are highlighted.

2 Acknowledgements

The author would like to express gratitude to Cypher Stack and Aaron Feickert for their review
of this work [4]. The initial revision of this paper contained minor flaws in Definition 10 and
significant issues in the proof of Theorem 2, some of which were also present in the original CLSAG.
Although no practical vulnerabilities were found arising from them, these findings were subsequently
addressed and rectified with the invaluable suggestions provided by Aaron Feickert and Cypher Stack.

*Val Pisarkov
Thttps://orcid.org/0009-0004-7931-8384
tVersion: 1.4. Last update: 2024-03-08.

3 Application

d/v-CLSAG may be used in cases when different group generators for different ring layers are
necessary.

For instance, in the Zano project a user can transfer an arbitrary number of assets within a
single transaction. The method used for implementing the assets requires using 2 distinct generators,
G and X in a 3-layer arrangement (G, G, X) for a normal transaction and in a 5-layer arrangement
(G,G,X,X,Q) for a Proof-of-Stake mining transaction (see also [3]) for all ring members. Using
3/2-CLSAG and 5/2-CLSAG correspondingly in that context solves the problem, while the signature
size is increased by only n scalar elements, where n is the ring size.

4 d/y-CLSAG construction

Definition 10 (d/v-CLSAG). The tuple (SETUP, KEYGEN, SIGN, VERIFY, LINK) as follows is a
d-LRS signature scheme.

— SETUP — par. First, SETUP selects a prime p, a group G with prime order p, selects d cryp-
tographic hash functions Hg, ..., H3_, (modeled as random oracles) with codomain F,, selects v

nonzero' group generators Go, ..., Gy_1 € G, where v < d, selects surjection g : [0,d — 1] — [0,v — 1]

that maps indices of elements o] G = (G gy, ---,Gga—1)) € ¢? to the corresponding genera-
tors, selects a cryptographic hash function HP with codomain G. Then, SETUP outputs the group
parameter tuple and the hash functions

par = (p,G,d,v,9,{Gr}{g, {H;}I=5, HP).2

- KEYGEN — (sk, pk). When required for a new key, KEYGEN samples a fresh secret key and
computes the associated public key:
sk=(z0,21,...,2d-1) (F;)d
pk:=sko G=(Zy,Z1,...,Zq-1) € ¢

KEYGEN outputs (sk, pk). We say z is the linking key, the remaining keys {z; ;i;ll are the
auziliary keys, and we denote the linking key with .

- SIGN(m, Q, sk) — {Lsgign,0}. SIGN takes as input a message m € {0,1}*, a ring Q =
(pky, ..., pk,_,) for ring members pk; = (Zio,...,Zia-1) € G, and a secret key sk =
(20,--.,2a-1) € (F})®. SIGN does the following.

1. IfQ ¢ ¢ for some m, SIGN outputs Lsign and terminates.

2. Otherwise, SIGN parses® Q to obtain each pk;. If the public key associated with the input
sk is not a ring member in (), then SIGN oulputs L gi4, and terminates.

3. Otherwise SIGN finds the signing index I, such that pk, = sko G. SIGN samples
{ar}iZh € (F,)? uniformly at random, samples {Sk’i}z;é,i;ﬁl € (F,)" =Y uniformly at

1We define a generator as nonzero if it is not the identity element of the group.
2Note that domain separation can be used here to take one H° and construct each H; by defining
Hi(z) = H(G | =)

3Not;e that this parsing always succeeds if SIGN does not fail in the previous step.

random, and computes the group elements H; = HP(X;) for each i. SIGN computes the
aggregation coefficients {j; }?;3, the linking tag T, the auziliary group elements {D; }?;%,

and the aggregated public keys:

T=9, {9,}={zH} pi=H Q| T I {D,}=1)
Wii= . piZi; W= > 9,
vi:g(j)=k Vig(j)=k

and the aggregated secret keys:

W = Z Mz

J:9(3)=k
Fori=11+1,...,1 -1, (operating modulo n), k =0...v — 1, SIGN computes:

Ly = apGy Ry = oy Hy a1 =H(m || Q | {Lea}izo Il {Rra}izo)
Lii = skiGr +ciWri Bei=sealli+ ek iy =H§(m || Q || {Lri}izo | {Rei}izo)

and lastly computes
{sk1} = {ar — qwr}j—;
4. SIGN returns the signature o = (co, {sk.i}heoi—g T, {9, jl;ll)
- VERIFY(m, Q,0) — {0,1}. VERIFY takes as input a message m, a matriz Q = (pky, ..., pk,_1),
and a signature o.

1. IfQ ¢ 6" orifo ¢ F’;““‘l x 6%, VERIFY outputs 0 and terminates.

2. VERIFY parses* (pky,...,pk, 1) < Q for keys pk; € G* fori € [0,n—1], and parses each
public key (Zio, - .., Zi.a—1) pk;. VERIFY also parses (co, {sk.i}he oo s T {D; ?;11) —
o. I =0 VERIFY outputs 0 and terminates. VERIFY computes each H; = HP(X;),
computes the aggregation coefficients, and computes aggregated public keys:

T=90, {D;}=A{zH} pi=HQ N TN {D;}21)
Wi = Z WjZi,j Wy, == Z 1159
vi:g(j)=k Vig(j)=k
3. VERIFY sets ¢, == ¢y and, fori=1,2,...,n—1, computes the following.

{Lk,i}={sk,Gr + Wi}
{Rk,i}:= {sk,:Hi + 20}
cii=Ho(m || Q Il {Lri}io | {Rei}hzs)

4. If ¢, = co, VERIFY outputs 1, and otherwise outputs 0.
- LINk((m, Q,0), (m/,Q',0")) — {0,1}. LINK takes as input two message-ring-signature triples.

1. If VERIFY(m,Q,0) =0 or VERIFY(m/,Q’,0’) = 0, LINK outputs 0 and terminates.
2. Otherwise, LINK parses® the signatures to obtain the individual linking tags (T,{D;};), (T, {D5}5) «

4This parsing is always successful if the previous step does not terminate VERIFY.
5As before with VERIFY, this parsing is always successful if the previous step does not terminate LINK.

o,0'. LINK calculates {15}, {1t} and then 20,20, LINK outputs 1 if W = W' and 0 oth-
erwise.

This implementation has full-key-oriented linkability with linkability tags 20: two signatures
will link if they not only are signed using the same linking and auxiliary keys, but also the
same ring. We can replace the LINK algorithm with single-key-oriented linkability :

- LINk((m, Q,0), (m/,Q',0")) — {0,1}. LINK takes as input two message-ring-signature triples.

1. If VERIFY(m,Q,0) =0 or VERIFY(m/,Q’,0’) = 0, LINK outputs 0 and terminates.

2. Otherwise, LINK parses® the signatures to obtain the individual linking tags T, T < o,0’.
LINK outputs 1 if ¥ =%’ and 0 otherwise.

5 Proofs of Security

Lemma 2. For values Q,%,{Dj}; as defined in Definition 10, let {{1;}; also be defined as in
Definition 10.

1. For all k and for all i, the mapping

QT AD;}) = D wiZi

J:9(j)=k
is collision resistant.

2. For all k, the mapping
(@, %, {Qj}j) - Z 159

J:g(j)=k

is collision resistant.

Proof: Follows immediately from the random oracle model we use for H*. [

Theorem 2 (Hardness of Discrete Logarithm Implies Unforgeability). If a (¢,€, q)-solver
of the unforgeability game exists for the scheme of Definition 10 that makes k' corruption oracle

queries, then there exists a +to) + 11, q/ €ly — 27)(5),q)-solver o e discrete logarithm
ies, then th st 2t + o) + t1, (=5)2e(€ — L) (L ! the discrete logarith

problem in G for some constants tg, ;.

Proof: Assume A is a (t, €, q)-solver of the non-slanderability game of Definition 8. We wrap A in
an algorithm B. The algorithm B executes A in a black box, handling oracle queries for A. Then, B

regurgitates the output of A together with an index ¢dxz. This way, B is sutable for use in the forking
lemma. We wrap 2 in a master algorithm M that is a (2(¢ + to) + t1, (q_q“)26(5 - %)(%), q)-solver

of the discrete logarithm problem in G, where 7 is as defined in Lemma 1.

If A produces a successful forgery, each verification query of the form

cirr =H3(m || Q | {Lra}iZo I {Rea}iZo)

6 As before with VERIFY, this parsing is always successful if the previous step does not terminate LINK.

occurs in the transcript between A and the random oracle #. Indeed, the signature triple produced
by A passes verification, so each challenge ¢;;1, whether made with oracle queries in the transcript
or not, must be matched by random oracle queries made by the verifier. The prover cannot guess
the output of such a query before making it except with negligible probability. Hence, if A outputs
a valid signature, all verification challenges are computed by an actual oracle query. See [2] for a
formal proof of this fact. Since all verification challenges are found through genuine oracle queries,
which are well-ordered, there exists a first H{ query made by A for computing verification challenges,
say ¢ = Ho(m || Q || {Lx} || {R)})- This was not necessarily the first query made to H; overall,
though; say it was the a'” query. Although the ring index for this query may not have been decided
when this query was first issued by A, by the end of the transcript the ring index has been decided.

We construct B in the following way. We grant B access to the same oracles as A. Any oracle
queries made by A are passed along by B to the oracles. The responses are recorded and then passed
back to A. The algorithm B works by finding two indices to augment the output of A. First, B finds the
‘Hg query index a corresponding to the first verification challenge computed by A used in verifying
the purported forgery. Second, B inspects the transcript of A to find the anonymity set index [in
the transcript such that ¢ = ¢;41 and {R;} = {Ry,} and {L}} = {Lx,}. Now B outputs idz = (a,l)
along with whatever A outputs. Clearly, B makes the same number of corruption oracle queries as A.

Note B succeeds whenever A does and runs in time at most ¢ just like A, except for some additional
time to to search the transcript for ¢dx. Since B is suitable for use in the forking lemma, we can use
FB to construct M.

The algorithm FP is granted oracle access to the same oracles as B except H§ and S0. The
algorithm FP simulates SO queries made by B by simple back-patching of H§ and simulates the
other queries made to H{ queries made by B using the random tapes h, h* as described in Section
3.1. All other oracle queries made by B are passed along by FZ to the actual oracles and handed
back to B.

Note that F5 runs in time 2(¢ + ¢¢) and (with probability at least e(s - 5-)) outputs a pair of
valid signature triples (m,Q, o), (m/,Q’,0’). The messages and anonymity sets are selected before
the fork point in the transcripts, so m = m’ and Q = Q’. Moreover, FZ makes at most 2’ corruption
queries. The challenges for the two transcripts are distinct since the forking algorithm outputs the

failure symbol L and terminates if the challenges for ¢;;;1 are the same in each transcript.

a1 < Hm || Q || {Lra}iZo I {Rea}iZo)) = chia

We wrap F? in an algorithm M that plays the standard discrete logarithm game. In this game,
the player M receives a single public key generated by its challenger with respect to a fixed group
generator, and must respond with the corresponding discrete logarithm. We require that the discrete
logarithm challenger set up its game such that the generator G corresponds to the j = 0 index of G,
i.e. G = Gy(p)- The algorithm M has corruption oracle access and runs F B in a black box, responding
to corruption oracle queries using keys it will generate itself.

Formally, M operates as follows.

(1) M receives a public key X from its challenger.

(2) Sample {z; ;}{;15 " € F.
(3) Sets up 4/o-CLSAG public keys

pki = (210, -, %id-1) G = (Zio,..., Zi,a-1)

and then sets Z; o = X for a randomly-sampled index #’.

(4) M executes FZ in a black box, using {pki}g;& as input. Upon receiving a corruption query
from FB on some pk;, i #i’, M responds with the corresponding discrete logarithms iz
and fails if ¢ = ¢'.

(5) If FP fails, or if FZ succeeds on a forking index [not corresponding to the returned public

key set to pk;/, M fails.

(6) Otherwise, M obtains two signature triples with the same message and ring, (m, @, o), (m, Q,o’)
and computes discrete logarithm x for public key X as follows:

(a) M computes the aggregated secret key wy, for index k = g(0): wy(o) = W
(b) M calculates aggregation coefficients {; }?;01. If p10 = 0 then M fails.

(¢) M finally obtains x:

T=2p0=py" | W) — Z Wizt
Vj#0:9(j)=g(0)

(7) M outputs z.

We observe that the index ¢’ is sampled uniformly at random in advance, and is unknown to
the forking algorithm and forger; further, the keys produced by M are sampled identically to that of
its challenger. In particular, this means that the adversary cannot base its queries or responses on
this index.

The intuition behind algorithm M is outlined below. M finds the following system of equations in
the transcripts by inspecting the verification challenge queries:

{Lk,l} = {Sk’le + Cka’l} = {S;c,le + C;Wk’l}
{Rii} = {srHi + Wi} = {5}, Hi + ;Wi }

M has enough information to compute

Skl — sj Sk, — sh
B =

! q—a
and therefore M can compute the aggregated secret keys wy = Skc’z:z:"l , including wg(q), corresponding
to the first generator Gy(gy and satisfying equation:
wyo) Go) = D, Ml

V3:9(3)=9(0)

Because M replaces Z;: o = X for a randomly-sampled index i’ and because of the collision resistance
implied by the weighting coefficients, this means:

Wg(0) = HoZ + Z HjZit
Vji#0:9(5)=g(0)

where z is the intended discrete logarithm that M needs to find. Clearly, as M knows {y;} and
{zi ;}j#0, it can calculate .

Denote with ¢; the time it takes for M to inspect the transcript, perform field and group opera-
tions, and process corruption queries for 2. Then the algorithm M runs in time at most 2(t+tg)+t;.

To complete the proof, consider the overall success probability and timing of M. As mentioned
above, the likelihood that the forking algorithm F7 fails is e(g = %) The likelihood that the forger
does not corrupt the challenge key pk; in its at most s’ corruption oracle queries is described by
a hypergeometric distribution, and is bounded by (g — #’)/q. The forking algorithm F? runs the

forger twice, so the likelihood that neither forger queries on this key is bounded by ((q — ') /q)?.

Note, that M fails if it obtains pg = 0. However, the likelihood that po = 0 is negligible under
the random oracle model.

Finally, for M to succeed, the public key set returned by the forking algorithm for its forgeries
must contain pk; at the forking point, noting that both forgeries fork at the same point using a
common public key set. This likelihood is therefore bounded by 1/gq.

This means that the overall likelihood that M succeeds is bounded by

() G- 6)

and scales as O(e?).
(]

The proof of Theorem 2 demonstrates that the validity of a triple implies that the aggregated
private keys wy are the discrete logarithms of the aggregated linking tags 20) with respect to H;
and are also the discrete logarithms of the aggregated keys W}, ; with respect to Gy. In this way, the
linking tag of a valid signature must be the linking tag corresponding to at least one ring member,
except possibly with negligible probability.

Corollary 1 (No Alien Linking Tags). If there exists a PPT algorithm A that produces a valid
signature triple (m,Q, o) with the scheme in Definition 10, then there exists a ring member in Q
whose aggregated keys Wy, have the same discrete logarithms wy, with respect to Gy as 20), have
with respect to H;, and these wy are known to A (except possibly with negligible probability).

Theorem 3. The scheme in Definition 10 is linkable under Definition 5 and Definition 6.

Proof. We show that valid, non-oracle signature triples from the scheme in Definition 10 satisfying
the corrupted key conditions in the game of Definition 5 always link. Hence, any algorithm fails at
that game except with negligible probability.

Assume that A, while playing the game of ACST linkability from Definition 5, produces a pair
of valid, non-oracle signature triples (m, @, o), (m*, Q*,c*) such that at most one key in Q U Q* is
corrupted or outside of S. This algorithm can be forked and rewound as above to compute the aggre-
gated private key used in computing each signature, say w = {wy;) }, w* = {w;(j)}, j=0...d-1.
At most one key in Q U Q* is corrupted or outside of S. Since A has knowledge of w, then w is
corrupted or outside of S, and likewise w* is corrupted or outside of S. Since at most one key in
Q U Q* can be corrupted or outside of S, we conclude w = w™.

Since key aggregation is preimage-resistant by its construction using hash functions and wo G
is the aggregated public key for some public key pk; = ({Z;;};) € @ N Q*, w must be aggregated
from a private key ({z ;};) using the aggregation function. In both the case of single-key-oriented
linkability and full-key-oriented linkability, the linkability tags are therefore exactly equal. Hence,
with probability 1, the pair of triples (m, @, o), (m*, Q*, c*) are linked, and A fails at ACST linkability
except with negligible probability.

Similarly, an algorithm that outputs ¢ + 1 unlinked signatures can be rewound to compute
2(q+1) signatures from which ¢+ 1 aggregated keys can be computed. Moreover, if these signatures
are unlinked, then the ¢ 4+ 1 aggregated keys are distinct, violating g-pigeonhole linkability. O

Theorem 4. If there exists a (t,€,q)-solver of the linkable anonymity game of Definition 9 under
the construction of Definition 10, then there exists a (t +t',€/2,q)-solver of the RO-DDH" game of
Definition 2 for some t'.

Proof. Let A be such a solver of the linkable anonymity game. We will construct an algorithm B that
executes A in a black box and is a solver of the RO-DDH game, acting as the challenger for A; the
algorithm will pass on HP random oracle queries to its own challenger, flip coins for {7—[;} random
oracle queries, and simulate signing oracle queries by backpatching. We assume that B keeps internal
tables to maintain consistency between the random oracle queries needed to simulate signing oracle
queries.

The algorithm B operates as follows:

— B receives a set of tuples {(R;, R}, R!)}%Zy from its challenger, and chooses a bit b’ € {0,1}
uniformly at random. Note that B does not know if its tuples are RO-DDH triples or not, as
its challenger chose a secret bit b € {0,1} uniformly at random to determine this.

— For all ¢ € [0;¢), B defines Z; o := R; and records the HP oracle mapping H?(Z,o) = Rj.
It chooses {zi,j}?;ll from F, uniformly at random, and builds a set of public keys S :=

{(Zi0,2:1Gg1)s - -+ zi,dfng(d—l))}?;(}- B provides the set S to A.
— A returns indices 0 < ig,41 < ¢ to B.

— B receives signing oracle queries of the form S0(m, @, pk), where 0 < | < ¢ is the index of
pk € Q,pk € S, and |Q| = n. There are two cases, which determine how B simulates the oracle
response, flipping coins for {’H;} oracle queries:

1. If it is the case that {pk;,, pk:, } ¢ Q or pk ¢ {pk;,, pki, }, then B proceeds with its signing
oracle simulation using the key pk.

2. Otherwise, there exists a bit ¢ € {0, 1} such that pk = pk,_. In this case, B sets ¢’ := c@ ¥V’
and proceeds with its signing oracle simulation using the key pk; ,. This is, if b = 0,
then B simulates a signature using the requested key from the player-provided index set.
If instead b’ = 1, then B simulates a signature using the other key.

In either case, B parses the public key set @ provided by A. For any key pk; == (Z; g, Z; 1,...,Z{ 4_1) €
@\ S, it makes oracle queries to its challenger to obtain H?(Z],). Then B simulates the sig-
nature:

"In this theorem and its proof we employ a slightly modified version of the RO-DDH (as defined in Definition 2),
where the fixed generator G is replaced with the fixed generator G q).

1. Define a map 7 : [0,n) — [0,q) U{L} that maps indices of elements of @ to the cor-
responding elements of S (or returns the distinguished failure symbol L for indices not
mapping to elements of S), and let 0 <[< n be the index of pk € Q.

2. Choose ¢, {Sk,i}z;(l):;:ol € Fp, uniformly at random.

3. Since pk € S by construction, 7(l) # L. Set T:= Do = R ;) and {D; }?;11 such that each
Dj = 2z (1), H* (Zr(1),0)-

4. Define the following:

1y HHQ, {D;}15,) for j € [0, d)
Yo w2y (@) # L)
1:9(7)=k
Wi = J:9(3) / |
Z MjZi,j (m(i) = 1)
J:9(j)=k
Wy, = Z Mjgj
J:9(j)=k

5. Foreachi =1,14+1,...,n—1,0,...,l—1 (that is, indexing modulo n), define the following:
Ly = 5k:Gr +ciWi

Ry — skiHP (Zr@iy,0) + €Wy (w(i) # L)
ki - Sk,i'Hp(ZZ{)O) + ¢; 20, (W(l) J_)

civ1 — H(m, Q, {Li,i}2Z5, {Ri,i}oZs)

6. B returns to A the tuple (co, {Sk,i}z;(l):?:_olv {9,}).

— A returns a bit b* to B.

— If b* =¥/, then B returns 0 to its challenger. Otherwise, it returns 1.

It is the case that B wins the RO-DDH game precisely when it correctly guesses the bit b chosen
by its challenger. Hence P[B wins] = 1P[B — 0/b=0]+ iP[B — 1|b = 1].

If b = 1, then the RO-DDH challenger provided random points { R} } that B used in its simulated
signatures, so A can do no better than random chance at determining &’. Since B — 1 exactly when
A loses the linkable anonymity game, we have P[B — 1|b=1] = 1.

On the other hand, if b = 0, then the RO-DDH challenger provided structured tuples that B used
in its simulated signatures, and A wins the linkable anonymity game with non-negligible advantage
€ over random chance. Since B — 0 exactly when A wins the linkable anonymity game, we have
PB—0b=0]= 3 +e

This means B wins the RO-DDH game with probability P[B wins] = § + § and has non-negligible
advantage 5. Further, B finishes with an added time ¢’ used in simulating oracle queries and per-

forming lookups. Hence, B is a (t +t',€/2, ¢)-solver of the RO-DDH game. O

References

Brandon Goodell, Sarang Noether, and Arthur Blue. Concise Linkable Ring Signatures and
Forgery Against Adversarial Keys. https://eprint.iacr.org/2019/654.pdf. 2019.

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anonymous Group
Signature for Ad Hoc Groups. https://eprint.iacr.org/2004,/027. 2004.

sowle and koe. Zarcanum: A Proof-of-Stake Scheme for Confidential Transactions with Hidden
Amounts. https://eprint.iacr.org/2021/1478.pdf. 2021.

Cypher Stack. Zano 4/o-CLSAG review. https://github.com /cypherstack /zano- clsag-review.
2024.

10

https://eprint.iacr.org/2019/654.pdf
https://eprint.iacr.org/2004/027
https://eprint.iacr.org/2021/1478.pdf
https://github.com/cypherstack/zano-clsag-review

	Introduction
	Acknowledgements
	Application
	dv-CLSAG construction
	Proofs of Security

