
d/v-CLSAG:

Extension for Concise Linkable Spontaneous Anonymous

Group Signatures

sowle1∗†

1Zano project, val@zano.org

March 2024‡

1 Introduction

In this paper we present a Schnorr-like linkable ring signature scheme we call d/v-CLSAG that
is extension for d-CLSAG scheme proposed in [1]. The proposed extension allows the use of different
group generators for different layers of the ring members: pk := sk ◦G, G = (Gk0

, . . . , Gkd−1
) ∈ Gd,

while the original scheme assumes the use of the same generator G across all layers: pk := sk ◦
G, G = (G, . . . , G) ∈ Gd. To improve the signature size we use key aggregation techniques in the
same way, but for distinct group generators {Gk} individually. Note, that we don’t require the
absence of efficiently-computable discrete logarithm relations between {Gk}. However, it might be
possible, that adding such a limitation would allow us to reduce the signature size. This is the
subject of future studies.

We provide the security statements for the proposed updated scheme in Theorem 2, Theorem 3,
and Theorem 4. The proofs mostly correspond to the original proofs in [1]. We use the same numer-
ation for theorems, definitions, and lemmas as in the original work. For the reader’s convenience,
all changes are highlighted.

2 Acknowledgements

The author would like to express gratitude to Cypher Stack and Aaron Feickert for their review
of this work [4]. The initial revision of this paper contained minor flaws in Definition 10 and
significant issues in the proof of Theorem 2, some of which were also present in the original CLSAG.
Although no practical vulnerabilities were found arising from them, these findings were subsequently
addressed and rectified with the invaluable suggestions provided by Aaron Feickert and Cypher Stack.

∗Val Pisarkov
†https://orcid.org/0009-0004-7931-8384
‡Version: 1.4. Last update: 2024-03-08.

1

3 Application

d/v-CLSAG may be used in cases when different group generators for different ring layers are
necessary.

For instance, in the Zano project a user can transfer an arbitrary number of assets within a
single transaction. The method used for implementing the assets requires using 2 distinct generators,
G and X, in a 3-layer arrangement (G,G,X) for a normal transaction and in a 5-layer arrangement
(G,G,X,X,G) for a Proof-of-Stake mining transaction (see also [3]) for all ring members. Using
3/2-CLSAG and 5/2-CLSAG correspondingly in that context solves the problem, while the signature
size is increased by only n scalar elements, where n is the ring size.

4 d/v-CLSAG construction

Definition 10 (d/v-CLSAG). The tuple (Setup, KeyGen, Sign, Verify, Link) as follows is a
d-LRS signature scheme.

– Setup → par. First, Setup selects a prime p, a group G with prime order p, selects d cryp-
tographic hash functions Hs

0, . . . ,Hs
d−1 (modeled as random oracles) with codomain Fp, selects v

nonzero1 group generators G0, . . . , Gv−1 ∈ G, where v ≤ d, selects surjection g : [0, d− 1]→ [0, v − 1]
that maps indices of elements of G = (Gg(0), . . . , Gg(d−1)) ∈ Gd to the corresponding genera-
tors, selects a cryptographic hash function Hp with codomain G. Then, Setup outputs the group
parameter tuple and the hash functions:
par := (p, G, d, v, g, {Gk}v−1

k=0, {Hs
j}

d−1
j=0 ,Hp).2

– KeyGen → (sk, pk). When required for a new key, KeyGen samples a fresh secret key and
computes the associated public key:

sk = (z0, z1, . . . , zd−1)← (F∗p)
d

pk := sk ◦G = (Z0, Z1, . . . , Zd−1) ∈ Gd

KeyGen outputs (sk, pk). We say z0 is the linking key, the remaining keys {zj}d−1
j=1 are the

auxiliary keys, and we denote the linking key with x.

– Sign(m,Q, sk) → {⊥Sign, σ}. Sign takes as input a message m ∈ {0, 1}∗, a ring Q =
(pk0, . . . ,pkn−1) for ring members pki = (Zi,0, . . . , Zi,d−1) ∈ Gd, and a secret key sk =
(z0, . . . , zd−1) ∈ (F∗p)

d. Sign does the following.

1. If Q ⊈ Gd×n for some n, Sign outputs ⊥Sign and terminates.

2. Otherwise, Sign parses3 Q to obtain each pki. If the public key associated with the input
sk is not a ring member in Q, then Sign outputs ⊥Sign and terminates.

3. Otherwise, Sign finds the signing index l, such that pkl = sk ◦ G. Sign samples
{αk}v−1

k=0 ∈ (Fp)
v uniformly at random, samples {sk,i}v−1

k=0,i̸=l ∈ (Fp)
v(n−1) uniformly at

1We define a generator as nonzero if it is not the identity element of the group.
2Note that domain separation can be used here to take one Hs and construct each Hs

j by defining

Hs
j(x) := Hs(j ∥ x).
3Note that this parsing always succeeds if Sign does not fail in the previous step.

2

random, and computes the group elements Hi = Hp(Xi) for each i. Sign computes the
aggregation coefficients {µj}d−1

j=0 , the linking tag T, the auxiliary group elements {Dj}d−1
j=1 ,

and the aggregated public keys:

T := D0 , {Dj} := {zjHl}

Wk,i :=
∑

∀j:g(j)=k

µjZi,j

µj := Hs
j(Q ∥ T ∥ {Dj}d−1

j=1)

Wk :=
∑

∀j:g(j)=k

µjDj

and the aggregated secret keys:

wk :=
∑

j:g(j)=k

µjzj

For i = l, l + 1, . . . , l − 1, (operating modulo n), k = 0 . . . v − 1, Sign computes:

Lk,l = αkGk

Lk,i = sk,iGk + ciWk,i

Rk,l = αkHl

Rk,i = sk,iHi + ciWk

cl+1 = Hs
0(m ∥ Q ∥ {Lk,l}v−1

k=0 ∥ {Rk,l}v−1
k=0)

ci+1 = Hs
0(m ∥ Q ∥ {Lk,i}v−1

k=0 ∥ {Rk,i}v−1
k=0)

and lastly computes
{sk,l} = {αk − clwk}v−1

k=0

4. Sign returns the signature σ = (c0, {sk,i}v−1,n−1
k=0,i=0 ,T, {Dj}d−1

j=1).

– Verify(m,Q, σ)→ {0, 1}. Verify takes as input a message m, a matrix Q = (pk0, . . . ,pkn−1),
and a signature σ.

1. If Q ⊈ Gd×n or if σ /∈ Fnv+1
p × Gd, Verify outputs 0 and terminates.

2. Verify parses4 (pk0, . . . ,pkn−1)← Q for keys pki ∈ Gd for i ∈ [0, n−1], and parses each

public key (Zi,0, . . . , Zi,d−1)← pki. Verify also parses (c0, {sk,i}v−1,n−1
k=0,i=0 ,T, {Dj}d−1

j=1)←
σ. If T = 0 Verify outputs 0 and terminates. Verify computes each Hi = Hp(Xi),
computes the aggregation coefficients, and computes aggregated public keys:

T := D0 , {Dj} := {zjHl}

Wk,i :=
∑

∀j:g(j)=k

µjZi,j

µj := Hs
j(Q ∥ T ∥ {Dj}d−1

j=1)

Wk :=
∑

∀j:g(j)=k

µjDj

3. Verify sets c′0 := c0 and, for i = 1, 2, . . . , n− 1, computes the following.

{Lk,i}:= {sk,iGk + c′iWk,i}
{Rk,i}:= {sk,iHi + c′iWk}
c′i+1:= Hs

0(m ∥ Q ∥ {Lk,i}v−1
k=0 ∥ {Rk,i}v−1

k=0)

4. If c′n = c0, Verify outputs 1, and otherwise outputs 0.

– Link((m,Q, σ), (m′, Q′, σ′))→ {0, 1}. Link takes as input two message-ring-signature triples.

1. If Verify(m,Q, σ) = 0 or Verify(m′, Q′, σ′) = 0, Link outputs 0 and terminates.

2. Otherwise, Link parses5 the signatures to obtain the individual linking tags (T, {Dj}j), (T′, {D′
j}j)←

4This parsing is always successful if the previous step does not terminate Verify.
5As before with Verify, this parsing is always successful if the previous step does not terminate Link.

3

σ, σ′. Link calculates {µj}, {µ′
j} and then W,W′. Link outputs 1 if W = W′ and 0 oth-

erwise.

This implementation has full-key-oriented linkability with linkability tags W: two signatures
will link if they not only are signed using the same linking and auxiliary keys, but also the
same ring. We can replace the Link algorithm with single-key-oriented linkability:

– Link((m,Q, σ), (m′, Q′, σ′))→ {0, 1}. Link takes as input two message-ring-signature triples.

1. If Verify(m,Q, σ) = 0 or Verify(m′, Q′, σ′) = 0, Link outputs 0 and terminates.

2. Otherwise, Link parses6 the signatures to obtain the individual linking tags T,T′ ← σ, σ′.
Link outputs 1 if T = T′ and 0 otherwise.

5 Proofs of Security

Lemma 2. For values Q,T, {Dj}j as defined in Definition 10, let {µj}j also be defined as in
Definition 10.

1. For all k and for all i, the mapping

(Q,T, {Dj}j)→
∑

j:g(j)=k

µjZi,j

is collision resistant.

2. For all k, the mapping

(Q,T, {Dj}j)→
∑

j:g(j)=k

µjDj

is collision resistant.

Proof: Follows immediately from the random oracle model we use for Hs. □

Theorem 2 (Hardness of Discrete Logarithm Implies Unforgeability). If a (t, ϵ, q)-solver
of the unforgeability game exists for the scheme of Definition 10 that makes κ′ corruption oracle

queries, then there exists a (2(t+ t0) + t1, (
q−κ′

q)2ϵ(ϵq −
1
2η)(

1
q), q)-solver of the discrete logarithm

problem in G for some constants t0, t1.

Proof: Assume A is a (t, ϵ, q)-solver of the non-slanderability game of Definition 8. We wrap A in
an algorithm B. The algorithm B executes A in a black box, handling oracle queries for A. Then, B
regurgitates the output of A together with an index idx. This way, B is sutable for use in the forking

lemma. We wrap FB in a master algorithm M that is a (2(t+ t0) + t1, (
q−κ′

q)2ϵ(ϵq −
1
2η)(

1
q), q)-solver

of the discrete logarithm problem in G, where η is as defined in Lemma 1.

If A produces a successful forgery, each verification query of the form

cl+1 = Hs
0(m ∥ Q ∥ {Lk,l}v−1

k=0 ∥ {Rk,l}v−1
k=0)

6As before with Verify, this parsing is always successful if the previous step does not terminate Link.

4

occurs in the transcript between A and the random oracle Hs
0. Indeed, the signature triple produced

by A passes verification, so each challenge cl+1, whether made with oracle queries in the transcript
or not, must be matched by random oracle queries made by the verifier. The prover cannot guess
the output of such a query before making it except with negligible probability. Hence, if A outputs
a valid signature, all verification challenges are computed by an actual oracle query. See [2] for a
formal proof of this fact. Since all verification challenges are found through genuine oracle queries,
which are well-ordered, there exists a first Hs

0 query made by A for computing verification challenges,
say c = Hs

0(m ∥ Q ∥ {L∗
k} ∥ {R∗

k}). This was not necessarily the first query made to Hs
0 overall,

though; say it was the ath query. Although the ring index for this query may not have been decided
when this query was first issued by A, by the end of the transcript the ring index has been decided.

We construct B in the following way. We grant B access to the same oracles as A. Any oracle
queries made by A are passed along by B to the oracles. The responses are recorded and then passed
back to A. The algorithm B works by finding two indices to augment the output of A. First, B finds the
Hs

0 query index a corresponding to the first verification challenge computed by A used in verifying
the purported forgery. Second, B inspects the transcript of A to find the anonymity set index l in
the transcript such that c = cl+1 and {R∗

k} = {Rk,l} and {L∗
k} = {Lk,l}. Now B outputs idx = (a, l)

along with whatever A outputs. Clearly, B makes the same number of corruption oracle queries as A.

Note B succeeds whenever A does and runs in time at most t just like A, except for some additional
time t0 to search the transcript for idx. Since B is suitable for use in the forking lemma, we can use
FB to construct M.

The algorithm FB is granted oracle access to the same oracles as B except Hs
0 and SO. The

algorithm FB simulates SO queries made by B by simple back-patching of Hs
0 and simulates the

other queries made to Hs
0 queries made by B using the random tapes h, h* as described in Section

3.1. All other oracle queries made by B are passed along by FB to the actual oracles and handed
back to B.

Note that FB runs in time 2(t+ t0) and (with probability at least ϵ(ϵq −
1
2η)) outputs a pair of

valid signature triples (m,Q, σ), (m′, Q′, σ′). The messages and anonymity sets are selected before
the fork point in the transcripts, som = m′ andQ = Q′. Moreover, FB makes at most 2κ′ corruption
queries. The challenges for the two transcripts are distinct since the forking algorithm outputs the
failure symbol ⊥ and terminates if the challenges for cl+1 are the same in each transcript.

cl+1 ← Hs
0(m ∥ Q ∥ {Lk,l}v−1

k=0 ∥ {Rk,l}v−1
k=0))→ c′l+1

We wrap FB in an algorithm M that plays the standard discrete logarithm game. In this game,
the player M receives a single public key generated by its challenger with respect to a fixed group
generator, and must respond with the corresponding discrete logarithm. We require that the discrete
logarithm challenger set up its game such that the generator G corresponds to the j = 0 index of G,
i.e. G = Gg(0). The algorithm M has corruption oracle access and runs FB in a black box, responding
to corruption oracle queries using keys it will generate itself.

Formally, M operates as follows.

(1) M receives a public key X from its challenger.

(2) Sample {zi,j}q−1,d−1
i,j=0 ∈ F.

(3) Sets up d/v-CLSAG public keys

pki = (zi,0, . . . , zi,d−1) ◦G = (Zi,0, . . . , Zi,d−1)

5

and then sets Zi′,0 = X for a randomly-sampled index i′.

(4) M executes FB in a black box, using {pki}q−1
i=0 as input. Upon receiving a corruption query

from FB on some pki, i ̸= i′, M responds with the corresponding discrete logarithms {zi,j},
and fails if i = i′.

(5) If FB fails, or if FB succeeds on a forking index l not corresponding to the returned public
key set to pki′ , M fails.

(6) Otherwise, M obtains two signature triples with the same message and ring, (m,Q, σ), (m,Q, σ′)
and computes discrete logarithm x for public key X as follows:

(a) M computes the aggregated secret key wk for index k = g(0): wg(0) =
sg(0),l−s′g(0),l

c′l−cl
.

(b) M calculates aggregation coefficients {µj}d−1
j=0 . If µ0 = 0 then M fails.

(c) M finally obtains x:

x = zi′,0 = µ−1
0

wg(0) −
∑

∀j ̸=0:g(j)=g(0)

µjzi′,j


(7) M outputs x.

We observe that the index i′ is sampled uniformly at random in advance, and is unknown to
the forking algorithm and forger; further, the keys produced by M are sampled identically to that of
its challenger. In particular, this means that the adversary cannot base its queries or responses on
this index.

The intuition behind algorithm M is outlined below. M finds the following system of equations in
the transcripts by inspecting the verification challenge queries:

{Lk,l} = {sk,lGk + clWk,l} = {s′k,lGk + c′lWk,l}
{Rk,l} = {sk,lHl + clWk} = {s′k,lHl + c′lWk}

M has enough information to compute

{Wk,l} =
{
sk,l − s′k,l
c′l − cl

Gk

}
, {Wk} =

{
sk,l − s′k,l
c′l − cl

Hl

}
and therefore M can compute the aggregated secret keys wk =

sk,l−s′k,l

c′l−cl
, including wg(0), corresponding

to the first generator Gg(0) and satisfying equation:

wg(0) ·Gg(0) =
∑

∀j:g(j)=g(0)

µjZi′,j

Because M replaces Zi′,0 = X for a randomly-sampled index i′ and because of the collision resistance
implied by the weighting coefficients, this means:

wg(0) = µ0x+
∑

∀j ̸=0:g(j)=g(0)

µjzi′,j

6

where x is the intended discrete logarithm that M needs to find. Clearly, as M knows {µj} and
{zi′,j}j ̸=0, it can calculate x.

Denote with t1 the time it takes for M to inspect the transcript, perform field and group opera-
tions, and process corruption queries for FB . Then the algorithm M runs in time at most 2(t+t0)+t1.

To complete the proof, consider the overall success probability and timing of M. As mentioned
above, the likelihood that the forking algorithm FB fails is ϵ(ϵq −

1
2η). The likelihood that the forger

does not corrupt the challenge key pki′ in its at most κ′ corruption oracle queries is described by
a hypergeometric distribution, and is bounded by (q − κ′)/q. The forking algorithm FB runs the
forger twice, so the likelihood that neither forger queries on this key is bounded by ((q − κ′)/q)2.

Note, that M fails if it obtains µ0 = 0. However, the likelihood that µ0 = 0 is negligible under
the random oracle model.

Finally, for M to succeed, the public key set returned by the forking algorithm for its forgeries
must contain pki′ at the forking point, noting that both forgeries fork at the same point using a
common public key set. This likelihood is therefore bounded by 1/q.

This means that the overall likelihood that M succeeds is bounded by(
q − κ′

q

)2

ϵ

(
ϵ

q
− 1

2η

)(
1

q

)
and scales as O(ϵ2).

□

The proof of Theorem 2 demonstrates that the validity of a triple implies that the aggregated
private keys wk are the discrete logarithms of the aggregated linking tags Wk with respect to Hl

and are also the discrete logarithms of the aggregated keys Wk,l with respect to Gk. In this way, the
linking tag of a valid signature must be the linking tag corresponding to at least one ring member,
except possibly with negligible probability.

Corollary 1 (No Alien Linking Tags). If there exists a PPT algorithm A that produces a valid
signature triple (m,Q, σ) with the scheme in Definition 10, then there exists a ring member in Q
whose aggregated keys Wk,l have the same discrete logarithms wk with respect to Gk as Wk have
with respect to Hl, and these wk are known to A (except possibly with negligible probability).

Theorem 3. The scheme in Definition 10 is linkable under Definition 5 and Definition 6.

Proof. We show that valid, non-oracle signature triples from the scheme in Definition 10 satisfying
the corrupted key conditions in the game of Definition 5 always link. Hence, any algorithm fails at
that game except with negligible probability.

Assume that A, while playing the game of ACST linkability from Definition 5, produces a pair
of valid, non-oracle signature triples (m,Q, σ), (m∗, Q∗, σ∗) such that at most one key in Q ∪Q∗ is
corrupted or outside of S. This algorithm can be forked and rewound as above to compute the aggre-
gated private key used in computing each signature, say w = {wg(j)},w∗ = {w∗

g(j)}, j = 0 . . . d− 1.
At most one key in Q ∪ Q∗ is corrupted or outside of S. Since A has knowledge of w, then w is
corrupted or outside of S, and likewise w∗ is corrupted or outside of S. Since at most one key in
Q ∪Q∗ can be corrupted or outside of S, we conclude w = w∗.

7

Since key aggregation is preimage-resistant by its construction using hash functions and w ◦G
is the aggregated public key for some public key pkl = ({Zl,j}j) ∈ Q ∩ Q∗, w must be aggregated
from a private key ({zl,j}j) using the aggregation function. In both the case of single-key-oriented
linkability and full-key-oriented linkability, the linkability tags are therefore exactly equal. Hence,
with probability 1, the pair of triples (m,Q, σ), (m∗, Q∗, σ∗) are linked, and A fails at ACST linkability
except with negligible probability.

Similarly, an algorithm that outputs q + 1 unlinked signatures can be rewound to compute
2(q+1) signatures from which q+1 aggregated keys can be computed. Moreover, if these signatures
are unlinked, then the q + 1 aggregated keys are distinct, violating q-pigeonhole linkability.

Theorem 4. If there exists a (t, ϵ, q)-solver of the linkable anonymity game of Definition 9 under
the construction of Definition 10, then there exists a (t+ t′, ϵ/2, q)-solver of the RO-DDH7 game of
Definition 2 for some t′.

Proof. Let A be such a solver of the linkable anonymity game. We will construct an algorithm B that
executes A in a black box and is a solver of the RO-DDH game, acting as the challenger for A; the
algorithm will pass on Hp random oracle queries to its own challenger, flip coins for {Hs

j} random
oracle queries, and simulate signing oracle queries by backpatching. We assume that B keeps internal
tables to maintain consistency between the random oracle queries needed to simulate signing oracle
queries.

The algorithm B operates as follows:

– B receives a set of tuples {(Ri, R
′
i, R

′′
i)}

q−1
i=0 from its challenger, and chooses a bit b′ ∈ {0, 1}

uniformly at random. Note that B does not know if its tuples are RO-DDH triples or not, as
its challenger chose a secret bit b ∈ {0, 1} uniformly at random to determine this.

– For all i ∈ [0; q), B defines Zi,0 := Ri and records the Hp oracle mapping Hp(Zi,0) = R′
i.

It chooses {zi,j}d−1
j=1 from Fp uniformly at random, and builds a set of public keys S :=

{(Zi,0, zi,1Gg(1), . . . , zi,d−1Gg(d−1))}q−1
i=0 . B provides the set S to A.

– A returns indices 0 ≤ i0, i1 < q to B.

– B receives signing oracle queries of the form SO(m,Q, pk), where 0 ≤ l < q is the index of
pk ∈ Q, pk ∈ S, and |Q| = n. There are two cases, which determine how B simulates the oracle
response, flipping coins for {Hs

j} oracle queries:

1. If it is the case that {pki0 , pki1} ̸⊂ Q or pk /∈ {pki0 , pki1}, then B proceeds with its signing
oracle simulation using the key pk.

2. Otherwise, there exists a bit c ∈ {0, 1} such that pk = pkic . In this case, B sets c′ := c⊕ b′

and proceeds with its signing oracle simulation using the key pkic′ . This is, if b′ = 0,
then B simulates a signature using the requested key from the player-provided index set.
If instead b′ = 1, then B simulates a signature using the other key.

In either case, B parses the public key setQ provided by A. For any key pki := (Z ′
i,0, Z

′
i,1, . . . , Z

′
i,d−1) ∈

Q \ S, it makes oracle queries to its challenger to obtain Hp(Z ′
i,0). Then B simulates the sig-

nature:
7In this theorem and its proof we employ a slightly modified version of the RO-DDH (as defined in Definition 2),

where the fixed generator G is replaced with the fixed generator Gg(0).

8

1. Define a map π : [0, n) → [0, q) ∪ {⊥} that maps indices of elements of Q to the cor-
responding elements of S (or returns the distinguished failure symbol ⊥ for indices not
mapping to elements of S), and let 0 ≤ l < n be the index of pk ∈ Q.

2. Choose cl, {sk,i}v−1,n−1
k=0,i=0 ∈ Fp uniformly at random.

3. Since pk ∈ S by construction, π(l) ̸= ⊥. Set T:= D0 := R′′
π(l) and {Dj}d−1

j=1 such that each

Dj := zπ(l),jHp(Zπ(l),0).

4. Define the following:

µj ← Hs
j(Q, {Dj}d−1

j=0) for j ∈ [0, d)

Wk,i :=


∑

j:g(j)=k

µjZπ(i),j (π(i) ̸= ⊥)

∑
j:g(j)=k

µjZ
′
i,j (π(i) = ⊥)

Wk :=
∑

j:g(j)=k

µjDj

5. For each i = l, l+1, . . . , n−1, 0, . . . , l−1 (that is, indexing modulo n), define the following:

Lk,i := sk,iGk + ciWk,i

Rk,i :=

{
sk,iHp(Zπ(i),0) + ciWk (π(i) ̸= ⊥)
sk,iHp(Z ′

i,0) + ciWk (π(i) = ⊥)

ci+1 ← Hs
0(m,Q, {Lk,i}v−1

k=0, {Rk,i}v−1
k=0)

6. B returns to A the tuple (c0, {sk,i}v−1,n−1
k=0,i=0 , {Dj}).

– A returns a bit b∗ to B.

– If b∗ = b′, then B returns 0 to its challenger. Otherwise, it returns 1.

It is the case that B wins the RO-DDH game precisely when it correctly guesses the bit b chosen
by its challenger. Hence P[B wins] = 1

2P[B → 0|b = 0] + 1
2P[B → 1|b = 1].

If b = 1, then the RO-DDH challenger provided random points {R′′
i } that B used in its simulated

signatures, so A can do no better than random chance at determining b′. Since B→ 1 exactly when
A loses the linkable anonymity game, we have P[B→ 1|b = 1] = 1

2 .

On the other hand, if b = 0, then the RO-DDH challenger provided structured tuples that B used
in its simulated signatures, and A wins the linkable anonymity game with non-negligible advantage
ϵ over random chance. Since B → 0 exactly when A wins the linkable anonymity game, we have
P[B→ 0|b = 0] = 1

2 + ϵ.

This means B wins the RO-DDH game with probability P[B wins] = 1
2+

ϵ
2 and has non-negligible

advantage ϵ
2 . Further, B finishes with an added time t′ used in simulating oracle queries and per-

forming lookups. Hence, B is a (t+ t′, ϵ/2, q)-solver of the RO-DDH game.

9

References

[1] Brandon Goodell, Sarang Noether, and Arthur Blue. Concise Linkable Ring Signatures and
Forgery Against Adversarial Keys. https://eprint.iacr.org/2019/654.pdf. 2019.

[2] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anonymous Group
Signature for Ad Hoc Groups. https://eprint.iacr.org/2004/027. 2004.

[3] sowle and koe. Zarcanum: A Proof-of-Stake Scheme for Confidential Transactions with Hidden
Amounts. https://eprint.iacr.org/2021/1478.pdf. 2021.

[4] Cypher Stack. Zano d/v-CLSAG review. https://github.com/cypherstack/zano-clsag-review.
2024.

10

https://eprint.iacr.org/2019/654.pdf
https://eprint.iacr.org/2004/027
https://eprint.iacr.org/2021/1478.pdf
https://github.com/cypherstack/zano-clsag-review

	Introduction
	Acknowledgements
	Application
	dv-CLSAG construction
	Proofs of Security

